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Abstract In the present paper an extended version of the FultonwGoutman u a n s f o d o n  
(FGT) is applied to an archetypical electron-phonon system which also involves electronic spin 
(the two-sites-two-spiwne-particle (221 model)). ”0 alternatives of the Fulton-Gouterman 
concept are given: one corresponding to the original transformation (non-exponential) and one 
to an exponential form. The lader appears to be interesting with regard to recent discussions of 
squeezing and anti-squeezing effects in supercondunivity since it offers itself to a multi-particle 
generalization. Some remarks on the physical background are also made. 

1.~ Introduction 

For many years the theoretical treatment of coupled electron-phonon systems has been of 
great interest and recently it has regained new actuality in the fields of superconductivity 
and quantum diffusion. Among the multitude of methods and techniques which have been 
invoked to handle this problem one seems to be of particular importance since it allows 
for an exact diagonalization of the coupled system with respect to the electronic subspace. 
It thus reduces the problem to that of an effective dynamics in the vibrational subspace. 
This method was first introduced in the seminal paper of Fulton and Gouterman @G) [I]. 
In this paper an electronic two-level system coupled to oscillators and which displays an 
inversion symmetry is considered. The authors introduced a unitary transformation 
which exploits this symmehy in an optimal way such that an electronic diagonalization is 
achieved. For the details of this transformation we refer to the original paper [l] and also to 
a book by one of us [Z]. The first to apply this method for a numerically accurate solution 
of the vibrational subproblem were Shore and Sander [3]. 

Although at a first glance the FGT seems to be somewhat exotic, since the effective 
Sctuodmger-like equations in the vibrational subspace (FG equations (FGE)) embody 
reflection operators, it has the invaluable advantage of displaying, in a lucid topological 
way, the dominant antagonistic tendencies in the exact solution [4,5]. This was also first 
noted by Shore and Sander [3] who have shown that the vibrational part of the ground-state 
wavefunction has the tendency, depending on the strength of the electronic transfer term, to 
disintegrate its structure into two parts. Physically, this amounts to a competition between 
the tendency to reduce the electronic mobility, which is established by the electron-phonon 
coupling term (polaron effect, Debye-Waller screening, etc), and the ‘propagative tendency’ 
in the form of a reflection established by the transfer term [6-9]. Later, another effect of 
these antagonistic tendencies was found for more elevated states (‘exotic states’ [7]), which 
provided the possibility of a semiquantitative understanding of the retarded luminescence 
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phenomenon [7,8]. Recently, the ground state of the above-mentioned two-level system 
has been approached by use of a squeezing transformation [lo], allowing a modified trial 
function of the vibrational part of the total wavefunction to be constructed, which may also 
be advantageously discussed within the FG frame. 

The FG method can be generalized to all spatially symmetric systems [ 111 which are 
governed by an Abelian group and for which the electronic base constitutes a regular 
representation. In particular, this generalization has been applied to the translational group 
[Ill, e.g. to crystalline exciton-phonon systems LIZ]. In translationally invariant and cyclic 
systems the FGT amounts to a kind of 'discretized' Lee-Low-Pines transformation (LLPT), i.e. 
to a specification of the LLPT for one-band electron systems in the Wannier representation. 
More details will be given in a forthcoming paper. 

For future applications it seems desirable, on the one hand, to employ the FG concept to 
one-electron-phonon systems containing spin-flip terms in their Hamiltonians. An example 
of this kind, a spin-flip extension of the original FG Hamiltonian, is considered in this paper. 
On the other hand, it would seem attractive to apply the method to multi-electron systems 
which makes it necessary to introduce FG-type transformations of an exponential form. This 
will be studied in future papers. 

In the spin-extended version of the original FG problem considered in this paper we 
describe an electron with spin and an orbital two-state base which is coupled to a bath 
of harmonic oscillators. This model, which we call the two-sites-two-spins-one-particle 
model (the 221 model), is presented in section 2. For reference, the original FG problem 
is described briefly in section 3. In section 4 the sequence of unitary manipulations which 
eventually leads to a complete diagonalization of the 221-Hamiltonian with respect to the 
electronic subspace is presented. Since the 221-Hamiltonian displays an Abelian symmetry, 
it may also be electronically diagonalized by means of group theory. To achieve this we 
make use of results from of a previous paper by one of us [ 111 in section 5. In section 6 we 
elaborate somewhat on the physical background and possible practical applications. Finally, 
results and perspectives are given in section 7. 

In our presentation, the unitary transformation of an operator A and a wavefunction W 
will respectively be denoted as 
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where U is a unitary operator, U t  = U-', which will be written most often in the exponential 
form U = expS, where S is an anti-Hermitian operator, St = -S. We emphasize that all 
operators %e given as functions of the original basic dynamical variables of the coupled 
system. Combined transformations T, : Ta : A are understood as 

2. The two-sites-two-spins-one-particle model (221 model) 

The 221 model is represented by the Hamiltonian 
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We assume the Hamiltonian to be invariant against the symmetry operations E (unity 
operator) and I (reflection operator in Cartesian space) of the reflection group [ E ,  I) and 
we introduce dynamical variables for the electronic and oscillatoly subsystems respectively, 
which may be characterized with respect to the symmetry operations. The electronic creation 
and annihilation operators (cia, cj,, i = 1,2; U =?, $1 are assigned to the electronic base 
vectors liu) = ci,lvac) t and display the property 

ZCl0 = C b I  

lczO = C1,I 

Zlla) = I 2 o ) Z Q  
Il2u) = llU)lQ. 

and correspondingly (4) 

The vibrationd coordinates 
are related to a specific parity p ( p  = 1 for odd, p = 2 for even), such that 

where m = 1, . . . Mp ( M p :  mutiplicity of representation r ( p ) ) .  The phonon Hamiltonian 
reads 

and Pm,p are chosen as ‘symmetry coordinates’, i.e. they 

1 Q m . p  = ( - l )pQm,pZ (5) 

Hph = $%(P~, ,Pm,p  -I- Q i , p Q L , p Q m , p ) .  (6) 
m.p 

The quantities A(Q), B(Q), C(Q) and D(Q) are assumed to depend on the oscillatory 
coordinates [Qm,p] only; a generalization to momentum coordinates is straightforward. 
Invariance of H with respect to { E ,  Z] requires 

I A ( Q )  = A(Q)Z 
(7) 

IWQ) = -B(Q)Z 
ZC(Q) = C(Q)Z ~ ID(Q) -D(Q)I. 

The reflection operator I has the property 

p =  1 (8) 
and may be written as 

z = ze, . IQ (9) 
where Zd and ZQ pertain to the electronic and vibrational subsystenwrespectively. The 
reflection operator ZQ in [ Q, PI-space may be written in the form 

and has the property 

I e f ( Q m . p )  = f ( ( - l )PQm.p) .  

In addition we introduce the spin-flip operator Z, 

and a ‘spin-flip parity’ p,, = 1,2 for this operator, such that for a spin-parity-ordered 
function we have 

zolw@q = ( - l ) P * p P = ) ) .  (13) 
The restriction to one particle leads to the particle conservation law 
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3. Background Fulton-Gouterman transformation (FGT) 

For reference and lucidity we briefly describe the original FG problem which is a spinless 
model. It is represented by the Hamiltonian 
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X =  ~ p h + U ( Q ) ( C i C Z + C ~ C l )  + ~ ( Q ) ( C : C Z - C ~ C I )  (15) 

where Hph is again of the form (6) and symmetry requires the relations 

and for the Q-dependent functions a t e ) ,  b(Q) 

Particle conservation (for one particle) reads 
2 

C!Ci = 1. 
i=l 

Hamiltonian (15) can be diagonalized with respect to the electronic problem by a unitary 
transformation, the so-called FGT (TFG), which is characterized by the unitary operator 

We emphasize= at this point that the form (19) displays the unitarity property only, if we 
postulate a one-particle consemtion law. This necessitates that an application of UFO in the 
specific form (19) to non-particle-number-conserving operators like ci, etc, is not permitted. 
For further derails we refer to the book by one of us [2]. This restriction is not needed if 
we write UFO in an exponential form, UpG = exp[SFG], st = -s, where 

SFG = i-(1 x + IQ)(C,CZ t + C ~ C I  + cic2 - C ~ C I  - l/A) + -(I R - I Q ) ( c ~ c ~  t - C ~ C Z ) .  (20) 4 J z  8 

Under the one-particle provision this coincides with expression (19), but it may also 
be used for particle numbers which do not equaI one. For later applications (e.g. in 
superconductivity) this will be a crucial point. The transformation of an operator A and of a 
wavefunction Y is defined in equation (1). Using this relation the transformed fundamental 
operators are found to be 

1 + IQ 1 - I Q  
TFG : cz = i (-) (CI + CZ) + (x) (CI + CZ) 

245 
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and the basic constituents of the wavefunctions transform like 

I 
TFG : l2)f (9) = -(I2 + Zil1))f (9) Jz 

where the ket-vectors Ip) with p = 1,2 &e given by Ip) = cplvac) t and f (Q)  is any phonon 
function. The transformed Hamiltonian displays a diagonalized form in the electronic 
subspace 

(23) 

where 

Hence the new (transformed) eigenfunctions have the form 

where the @)’s satisfy Schradinger-like eigenvalue equations which we have called the 
FGE 

~$(Q)cJ.@)(Q) = E ~ c J : P ) ( Q ) .  (26) 

We receive the eigenfunctions V$ of the original Hamiltonian (15) by transforming c$ 
back to the original picture 

such that 

IQFG (PI -~(-l)PqJ(P) - FG (28) 

with p = 1,2 denoting odd and even parity, respectively. We stress that the phonon 
functions @)(Q) attached to the even- and odd-parity total eigenfunctions Vg) do not 
themselves display the parity property in Q-space; this is only true for the full eigenfunctions 

To avoid notational confusion it seems advisable at this stage to emphasize a basic 
peculiarity in the practical formulation of unitary transformations. In the original picture, 
the basic electronic operators of our system are related to some specific positions in Cartesian 
space, e.g. the operator c1 or the electronic orbit 11) pertains to a specific geometric ‘site 
1’ such that by reflection we have Zcl = CZZ or Ill) = 12)Z~ (see (16)). As observed in 
(21), the transformation TFO transmutes c1 into a superposition of CI and cz. From this we 
recognize, therefore, that in the transformed picture. the respective indices 1 and 2 no longer 
pertain to well defined geometrical positions in the original Cartesian space. Rather, they 

qg). 
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now adopt the quality of symmetry properties, index 1 refemng to an odd- and index 2 
refemng to an even-parity state (see (27)). 

One of the principal virtues of the FGE is the topological display of the conflicting 
tendencies inherent in most coupled electron-phonon systems. One of their terms. the 
a(Q) term, is connected with the reflection operator and tends to separate the vibrational 
wavefunction info two parts in Q-space. This was first analysed numerically by Shore 
and Sander [3]. More generally this influence can be described as a tendency to enlarge 
the spatial extension of the vibrational.wavefunction, which in recent times in the field of 
superconductivity and quantum diffusion has been approximated by a ‘squeezed state’ in P- 
space (i.e. an ‘anti-squeezed’ state in Q-space) [IO]. But, as noted from the act of reflection, 
it is rather a tendency towards spatial separation within the vibrational functions @,$‘I than 
a tendency towards broadening. The countereffect is represented by the b(Q) terms and, 
in the most simple case, is a ‘polaron’ effect, i.e. a tendency to reduce the mobility of the 
elec’uon, increasing its effective mass and dressing it with a phonon cloud. 

In the aforementioned book 121 a list of alternatives to the FGT is given. The simplest 
one is discussed in [I3]. It reads 

M Rapp and M Wagner 

(29) 1 t 
Jz UMFG = + IQ(CicI - cl‘&)] = exp[sMFGl 

(30) SMFG -nlQ(Czc1 1 t  - CiCZ). t 
4 

Using equation (1) again we find the properties 

1 
TMFG : ci = -(c1 - zQc2) Jz 

The tmnsformed form of Hamiltonian (15) is 

2 

TMFG : H = x h $ k ( Q ) c j c j  
j=1 

where 
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In the following discussion we will rely fully on this modified form of the FGT 
since the calculation proves much simpler than the one with the original form given by 
expression (44). Since T ~ G :  H is again diagonal with respect to the electronic problem, 
the new (transformed) eigenfunctions have a simple product form G,$iG = Ij)&)(Q),  
j = 1,2. 

Again we obtain two Schrodmger-like eigenvalue equations for @(Qe) which we call 
the modified FG equations (MFGE) 

hiiG(Q)&y)(Q) = k:)&y)(b) (34) 

and the original eigenfunctions C’gG are given by 

(35) 

Comparing these equations with (27) we note that j = 1 now pertains to even parity ( p  = 2) 
and j = 2 to odd parity ( p  = 1). 

U) - 1 YMFG MFG - - - ( - l ) ’ ~ l ) ~ Q l ( ~ Q ) ’ ~ ~ ’ ( ~ ) .  Jz 

4. Intuitive step-by-step construction 

Our aim is to  diagonalize^ the 221-Hamiltonian of section 2 with respect to the electronic 
subsystem by means of a unitary transformation which preferably should be in the form 
either of a single exponential or of a product of exponentials since then it is appropriate 
for a multi-particle generalization. To achieve this we rely on a step-by-step procedure, 
where the first two steps are straightforward extensions of the MFGT (31). We lkst choose 
a transformation U, which would diagonalize Hamiltonian (3) if there were no spin-flip 
terms, i.e. we just supplement transformation (29), (30) by spin indices 

(37) so = $~lQ(c2ccIo t - C10C20). t 

The basic transformation~properties are again given by (31), if appropriate spin indication 
is supplemented, and the transformed Hamiltonian (3) reads 

Ta : H = Hph -I- [ - A @ )  IQ + W2)l (C;,CZO - C~$IO) t 

,=T,4. 

(38) 

A second transformation ub may be found if we take notice of the fact that the spin-flip- 
operator I, introduced in section 2 plays a somewhat similar role to that of the reflection 
operator le, for the electronic orbitals. This suggests a kind of FGT for the spins 

U, = exp[,sj1 = -[I + Z,(C,+C~$ - cjrcjr)l 

t + [-C(Q) IQ + WQ)l (c?,pzo - clPcio). 
P#,=t.J 

(39) t t 1 
ub = n U, ’ 

j=1.2 1/2 

(40) s- - I - 4n Q I ?  I L  I (ci c. - c. t c.  I &  I? ) .  
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In passing, we note that this transformation would diagonalize a Hamiltonian which would 
not involve orbital transfer terms 1 cf 2, i.e. if the A(Q)-  and C(Q)-tms were absent 
in (3). The basic transformation properties of (39), (40) are given in appendix B. If the 
transformations T. and Ti are applied to Hamiltonian (3) in succession we find 

Tb : T, : H = Hph - A ( Q ) Z Q I C ~ ~ C Z ~  + C Q C Z ~  - cl tCiT - clJ.Ci&I 

M Rapp and M Wagner 

t i t t 

and electronic diagonalization is not yet achieved. 
Correspondingly to section 3 we note here that the 'spin' indices in the transformed 

picture (after the application of Tb, Tc or T, to the electronic operators) are no longer related 
to the spins themselves but to mixed spin states which can be attached to odd or even spin 
pari+q (see equation (51)). For the 'orbital' indices in the transformed picture (T. or ZJ the 
remark made in section 3 directly applies again. 

A final transformation T,, which achieves fhis goal, is provided by 

and yields the electronically diagonalized form 

where the total transformation operator reads U, = UaUbUc, 

h M ~ ~ ( Q )  ( j r )  =-Hpb - ( - 1 ) j A ( Q ) l ~  - ( - l ) j+rB(Q)  - (-l)j+rc(Q)rQ + ( - l ) 'D(Q)  (45) 

and where, in the exponents, t = 1 is taken for s =t and t = 2 for t =$. The transformed 
eigenfunctions are thus of the form 

$,$ir) = 1 j z ) & r ) ( Q )  (46) 

where &,V"(Q) satisfies the FGtype equations 

h i $ ~ ~ ) & ; r )  ( Q )  = ,qp&p (e).  (47) 

The basic properties of G and of the total transformation 
BY means of the total transformation U, = U&,U, the eigenfunctions Y$& of the 

original Hamiltonian H (see (3)) are found from expression (46) and may be written in the 

are written in appendix B. 

O'r) - U ,p) form 'MFG - I MFG 

YMFC - z(zQ)j*r[(-l) j*rll  t) - (-1yrQlz t) + ( - 1 ) ' [ 1  J) - IQ12 &)]6,""(Q) Vi) - 1 (48) 
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where j = 1 ,2 ;  7 = 1 , 2  and &")(e) are the eigenfunctions of the MFGE (47). 
For later reference we note the symmetry behaviour of this solution. Applying the 

properties of the parity operators Z and Z,, introduced in section 2 to expression (48) we get 

(49) ( j r )  1 j+ ly t i r )  ( j r )  - i Y W  ~ Y M F G  - (-1) t,m L*MFG - (-1) MFG 

j = 1 = p = 2  A j = 2 = p = 1  A 

from which we derive the parity correspondences 

(50) 

and for 'spin parity' 

(51) 
h z = p r .  

5. Group-theoretical construction 

In the preceding section we have found the electronic diagonalization by a sequence of 
three unitary transformations which have been successively established by physical intuition. 
There is also, however, a systematic way to construct such a type of unitary transformation. 

In this section we present this approach. For this purpose we use the results of a 
previous paper by one of us [ll]. There, a generalization of the FG approach is given 
which exploits group-theoretical theorems [14-161 and allows for more general symmetries 
of the Hamiltonian than a simple mirror synhetry. We consider a set of N orthonormal 
one-particle functions [ Ir)} which are distributed in space in such a manner that they can be 
uniquely generated from one function within the set, say IN), by the N symmetry operations 
R, of a group G 

Ir) = R,IN) r = 1, . . . , N RN = E(unity element) 

(rlr') = 8,rt V r,r' = 1,. _ _ ,  N (52) 

RJ = R;' . 
These functions then establish the regular representation of the group. We require that this 
group be Abelian 

R,R, ,=R, fR ,  V r , r ' = l ,  ..., N .  (53) 

Then there are precisely N irreducible representations r ( y ) ,  y = 1,. . . , N ,  all of which are 
one dimensional. We assume the Hamiltonian of the electron-phonon system is governed 
by the group G. Then the Hamiltonian of the vibrational subsystem can be written in the 
form 

Hph 1 c ( p A , y p m , y  + h 2 i y Q b . , f h , y )  (54) 

where are symmetry adapted coordinates pertaining to the irreducible representation 
r(y) and m = 1 ,  . . . ,My is the multiplicity index within one irreducible coordinate 
sequence. The interaction Hamiltonian W is written in the form 
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where the functions A, are chosen in such a manner that R,W = WR,. The structural 
form of the eigenfunctions is then uniquely given by the Wigner formula 

M Rapp and M Wagner 

Q@)(Q) := normalized phonon function 

R, := symmetry operation 

Rr(Q) := symmetry operation in Q-space. 

Instead of making recourse to the group-theoretically correct structural form of the 
eigenfunctions we can also apply a unitary transformation to the Hamiltonian H = Hph+ W 
of the form [l 11 

If this transformation is applied to H the latter is diagonalized with respect to the electronic 
subsystem 

where 

The remaining vibrational Schrodinger problem is thus governed by the generalized FGE 

&)(Q)Q@)(Q) = E ( Y ) Q ( Y ) ( Q )  (60) 

and the transformed eigenfunctions read 

= Iy)@"(Q). 

Inverting the transformation, = uFG@(Y), we receive just the Wgner expression 
(56). in which @"(Q) is to be understood as a solution of (60). 

We now apply the preceding formalism to our 221 model. We observe that the electronic 
base in this model can indeed be considered as a regular representation of an Abelian group. 
This becomes evident if we introduce ,@e symmetry operations 

R1 = I,I : combined inversion-spin-flip operator 

R2 = IC : spin-flip operator 

R3 = I : inversion operator 

R4 = E : unity operator. 
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By means of definition (52) we then have the electronic base-vector set ( Ir ) }  

14) = 12 4). 
The group, which is established by the operations (62). is isoinorphic to the group C,, 
which is Abelian. Its four irreducible representations can be assigned to the orbital and spin 
parities p ( =  1,2) and p,(= 1.2) introduced in section 2 

(64) 
n 

y = ppr = 11,12,21,22 

Inserting these in expression (56) we get the unitary transformation operator 

and if this vibrational eigenvalue problem has been solved the total eigenfunction is found 
to be 

f d P P # )  = [ppo)Q(pPo)(Q).  (70) 

Inverting the transformation by means of the unitary operator (66), @ P o )  = UFGW'O), 
we arrive at the original eigenfunction 
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which has the symmetry properties 

M Rapp and M Wagner 

(PPS) = ( - I )"y(PP"'  
I Y G  - (  Fc 'FG FC ' 

( P P S )  - -I)Pq'PP"' 

The complete properties of the FGT are given by 

We stress again that i ,  j ,  p ,  U have the meaning of orbital and spin indices in the original 
picture, while p, q, pu, qu indicate orbital and spin parities in the transformed picture. 

6. Physical background 

The 221 model should be considered as an archetype, just like its spinless analogue, which 
may sometimes govem the dynamics of molecular units in magnetic systems, if spin-flip 
interactions are involved. But it should be noted that the relevance of unitary transformations 
for prototype systems, even if they do not fully diagonalize the system, is of a broader scale 
for two major reasons. On the one hand they can often can be performed up to a closed 
form and on the other hand sometimes the dynamics of more complicated and physically 
more realistic systems, possibly after some preceding manipulation, may be traced back to 
the dynamics of one such prototype system. 

Specifically, our 221 model is possibly of use in high-T, superconducters, where the 
transfer dynamics of an electron (or hole) between an oxygen and its copper neighbours 
may play a basic role in the ferromagnetic clustering process needed to establish metallic 
behaviour. In this case, the transfer mechanism involves a spin-flip process. Ferromagnetic 
clustering units of this type are presently considered, by many workers in the field, as the 
initial step in a percolative process which, after reaching a doping threshold, eventually 
allows for metallic behaviour in these cuprate materials although in the undoped form they 
are anti-ferromagnetic and isolating. For details we refer to the proceedings of a recent 
conference [17]. 

To show in a somewhat didactical manner how in the electron-phonon dynamics of 
a Cu-0 unit our 221 model may be exploited, we characterize this unit by an electronic 
base of four states, Ilu), IZu), i.e. a single orbital state with spins o =?, per each ionic 
site, and by a single vibrational coordinate Q which describes the motion of the Cu-0 unit 
against the surrounding. We introduce a fictitious formal inversion symmetry, such that 
Zllu) = 12u)1, Z.Jiu) = li, -u)Zc and Z Q  = -QZ. We note that these definitions do not 
necessitate that the Hamiltonian itself has inversion symmetry. The most simple version of 
the 221 model is then of the form 

2 I? f(P2 + Q2Q2) + (E(  + c r i Q ) ~ j . , ~ i ~  t 
i=l o=t..l 
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where spin-flip dynamics are only considered in combination with orbital transfer. ai Q 
and E< are the static and dynamical energies pertaining to the copper and oxygen ions 
respectively, while T and T, are the transfer constants with and without spin-flip. Both 
transfer terms can be viewed as being due to orbital overlap but other causes are also 
conceivable. If €1 # €2 and 011 # -012 then the application of the FGT or the MFGT will also 
generate non-diagonal conhibutions in the transformed Hamiltonian, which then reads 

where LGL(Q) is a special realization of h$&(Q) (see equation (45)) and has the form 

hi&( e) = f ( P 2 +  f &(E1 + E l )  - f (O12 -O11) Q -(-1)jTrQ - (- l)j+'T<IQ. 

(76) 

Hnd pertains to the non-diagonal terms and is of the form 

If €1 zz and 011 zz -012, the contribution of the non-diagonal Hamiltonian to the 
total energy eigenvalues vanishes (Hnd ~ ~ 0 ) .  In this case, the non-diagonal parts of the 
transformed Hamiltonian may be treated as a small perturbation. 

Both the original FGT as well as those of the present investigations are one-electron 
transformations and their utility is diminished if more than a single particle is involved. 
Therefore a multi-particle generalization is desirable. Such a generalization, however, is not 
easy to achieve if the one-particle transfonnation operator U is not given in an exponential 
form, since then the unitarity condition poses problems. Yet, these do not occur if U is 
written as U = exp[S], or as a product of exponentials, since then only anti-Hermiticity 
of S(= -St) must be required, which in the multi-particle case is also easily warranted. 
Looking back to the transformations of this study we note that the one found in section 4 
is already in an exponential form 

U, = esQbesc (78) 

where the electronically bilinear operators Sa, sb and S, may be directly understood in a 
multi-particle sense as preserving their anti-Hermiticity. Since [Sa, sb] = 0 and [Sa, S,] = 0, 
but [sb, S,] # 0, we have two possibilities for writing U, in an exponential way 

U, = es,+sbesc or U, = esbesn+sc, 

It should be noted,,however, that the multi-particle application of this transformation is more 
complicated than in the one-particle case, since the conservation law (14) can no longer be 
used. We will discuss this further in a forthcoming paper. 

Finally, it should be emphasized that the application of unitary transformations does 
not require the definition of a specific Hamiltonian since it refers to any dynamical variable 
which is established as a functional of the basic variables of a given Hilbert space. The 
latter may well be a subspace of the physically relevant total Hilbert space. Specifically, 
the electronic base (two orbitals, two spins), to which the transformations of this study are 
referring to, may be subunits of a larger physical system. 
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7. Results and conclusions 

M Rapp and M Wagner 

In this paper a spin-flip extension of the original two-site model of FG is considered. It 
consists of two orbital states of the electronic subsystem and includes spin-flip terms in 
the Hamiltonian. We denote this model as the 221 model. The electronic subsystem is 
coupled to a vibrational subsystem such that in Euclidean space the system is governed 
by the inversion symmetry group. The total symmetry group of the system, however, also 
includes spin-flip operations and is of  dimension four; it is isomorphous to the group Ca. 
Since this group is also Abelian, the generalization of the FG procedure can he employed. 
This is presented in detail. On the other hand, we present a sequence of transformations 
U, = V,UI,U, which in their combination also diagonalize the electronic subsystem. U, 
constitutes a modification of the FGT UFG. Its value lies in the fact that its factors U,, 
Ub and U, disentangle the diagonalization procedure and allow for an additional physical 
insight into the dynamics of the system. 

Since the FG concept has proven useful for a large class of systems, where one particle (or 
exciton) is coupled to a vibrational subsystem, it is highly desirable to find a generalization of 
this concept for more than a single elementary particle or exciton. To achieve this, however, 
it is necessary to find an appropriate exponential form for the multi-particle unitary operator. 
Such a form, in general, is not provided by the group theoretical procedure presented in an 
earlier paper [l I]. Therefore one o f  our principal motivations for the present work was aimed 
at finding such exponential form for an archetypical electron system which is importank 
e.g. in the present discussion about high-T, superconductivity. This has been achieved in 
this paper. In a forthcoming paper  we^ will apply the established unitary transformation to 
the multi-particle situation. An additional motivation for doing this is related to one of the 
most pronounced features of the FGT, which is the fact that it lays open the influence of the 
electronic coupling on the vibrational subsystem in a very lucid way, such that the vibrational 
parts of the total wavefunctions can be discussed easily. In particular the FGE are suggestive 
for finding topological properties of the vibrational functions. This is o f  considerable 
actuality, since recently effects relating to spatial alterations of the vibrational functions 
(squeezing, anti-squeezing) have been discussed both in the field of superconductivity and 
quantum diffusion. 

Finally, we return to the relation between the FGT and the LLPT in polaron theory. For 
the latter we refer to the Pines article in the well known St Andrew’s Lectures [18]. As 
mentioned in section 1, the FGT in translationally invariant systems may be viewed as a 
kind of ‘discretized‘ LLPT. Since the LLPT in its original first quantized version is already 
written in exponential form, its transcription to a second quantized version, which is easily 
performed, already constitutes a legitimate multi-particle transformation. 

For completeness we note that Lee er a1 [19] have supplemented their ‘first’ 
transformation by a ‘second’ one of oscillatory displacement character. The multi-particle 
transcription of this latter transformation does not pose difficulties and has been used by 
Lemmens et al 1201 in the interacting polaron problem. 

However, the full multi-particle application of the ‘first’ LLPT is rather complicated, 
since the respective commutator expansions, specifically that of the phonon coordinates and 
momenta, involve electron-electron interaction terms. On the other hand, the possibility of 
establishing an effective electronic correlation resulting from the original electron-phonon 
interaction provides a fascinating contrast to the conventional effective correlation derived 
from the famous Frohlich transformation which is used in the BCS theory. 
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Appendix A. Search for the third transformation Tc 

For our purpose we have to introduce a set of pseudo spin-operators including site numbers 
i 

1 
2 U -  ( t  LZ - - c ; p q  - C!$Ci l )  

1 
LY - 2i zp 0;x = $C$Cil 1 +c;$c’T) t U - -(c! Ci$ - C!$Cil.) 

(80) 

with commutation relations 

[uk. uiyl = i & q L  cyclic (81) 

[ c ; x ,  = Iuiy ,  ~ y l  = [mi,, ~d = 0 Vi  # k (82) 

and 

(83) 

as particle conservation. Inserting (80) in the twice-transformed Hamiltonian (41) we obtain 

UIX 2 + U& =a;, +U$ = + 
Tb : Ta : H = Hph - ~A(Q)IQ(U& -U,”,) + 2iB(Q)lQ(Uzy - 0iY)  

+ C(Q)(Ua - u d  + 20(Q)(u~x - 013). (W 
From the tables at the end of [2], we know the properties of the transformation 

U = (1 +IQ)u~ + i(l - 1q)uY. 

T :U,” =m,’= 4 

(85) 

For example 

T : Q m . 1 4  = -2Qm,1IQuxuy = - i Q m , l l Q o i  (86) 

T : Q~.IEC = -2Qm,10,” = - f Q m , l .  

In (84) similar terms to those in (86) appear. Therefore, the extended form of (85) 

= (1 + ~ Q ) ( U I ~  + 02) + i(1 - IQ)(~I~ + uzy) (87) 

should be able to diagonalize rb : Ta : H with respect to the electron problem. 
Rewritten in creation and annihilation operators we obtain 

and its exponential form U, = exp[S,] with 
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Appendix E. List oftransformalions 

The basic properties of Ta are 

The basic properties of Tb are 

The basic properties of Tc are 
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