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Abstract. In the present paper an extended version of the Fulton-Gouterman transformation
{FGT) is applied to an archetypical electron-phonon system which also involves electronic spin
(the two-sites—two-spins—one-particle (221 model)). Two alternatives of the Folton—Gouterman
concept are given: one comesponding to the original transformation (non-exponential) and one
to an exponential form. The latter appears to be interesting with regard to recent discussions of
sgueezing and anti-squeezing effects in superconductivity since it offers itself to a multi-particle
generalization. Some remarks on the physical background are also made.

1. Introduction

For many years the theoretical treatment of coupled electron—phonon systems has been of
great interest and recently it has regained new actuality in the fields of superconductivity
and quantum diffusion. Among the multitude of methods and techniques which have been
invoked to handle this problem one seems to be of particular importance since it allows
for an exact diagonalization of the coupled system with respect to the electronic subspace.
It thus reduces the problem to that of an effective dynamics in the vibrational subspace.
This method was first introduced in the seminal paper of Fulton and Gouterman (FG) [1].
In this paper an electronic two-level system coupled to oscillators and which displays an
inversion symmetry is considered. The anthors introduced a unitary transformation (FGT)
which exploits this symmetry in an optimal way such that an electronic diagonalization is
achieved. For the details of this transformation we refer to the original paper [1] and also to
a book by one of us {2]. The first to apply this method for a numerically accurate solution
of the vibrational subproblem were Shore and Sander [3].

Although at a first glance the FGT seems to be somewhat exotic, since the effective
Schrodinger-like equations in the vibrational subspace (FG equations (FGE)) embody
reflection operators, it has the invalnable advantage of displaying, in a lucid topological
way, the dominant antagonistic tendencies in the exact solution {4,5]. This was also first
noted by Shore and Sander [3] who have shown that the vibrational part of the ground-state
wavefunction has the tendency, depending on the strength of the electronic transfer term, to
disintegrate its structure into two parts. Physically, this amounts to a competition between
the tendency to reduce the electronic mobility, which is established by the electron—phonon
coupling term (polaron effect, Debye—Waller screening, etc), and the “propagative tendency’
in the form of a reflection established by the transfer term [6-9]. Later, another effect of
these antagonistic tendencies was found for more elevated states (‘exotic states’ [7]), which
provided the possibility of a semiquantitative understanding of the retarded luminescence
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phenomenaon {7,8]. Recently, the ground state of the above-mentioned two-level system
has been approached by use of a squeezing transformation [10], allowing a modified trial
function of the vibrational part of the total wavefunction to be constructed, which may also
be advantageously discussed within the FG frame.

The ¥G method can be generalized to all spatially symmetric systems [11] which are
governed by an Abelian group and for which the electronic base constitutes a regular
representation. In particular, this generalization has been applied to the translational group
[11], e.g. to crystailine exciton—phonon systems [12]. In transiationally invariant and cyclic
systems the FGT amounts to a kind of ‘discretized’ Lee-Low-Pines transformation (LLPT), i.e.
to a specification of the LLPT for one-band electron systems in the Wannpier representation.
More details will be given in a forthcoming paper.

For future applications it seems desirable, on the one hand, to employ the FG concept to
one-electron—phonon systems containing spin—flip terms in their Hamiltonians. An example
of this kind, a spin—flip extension of the original ¥G Hamiltonian, is considered in this paper.
On the other hand, it would seem attractive to apply the method to multi-electron systems
which makes it necessary to introduce FG-type transformations of an exponential form. This
will be studied in future papers.

In the spin-extended version of the original FG problem considered in this paper we
describe an electron with spin and an orbital two-state base which is coupled to a bath
of harmonic oscillators. This model, which we call the two-sites—two-spins~one-particle
model (the 221 model), is presented in section 2. For reference, the original FG problem
is described briefly in section 3. In section 4 the sequence of unitary manipulations which
eventually leads to a complete diagonalization of the 221-Hamiltonian with respect to the
glectronic subspace is presented. Since the 221-Hamiltontan displays an Abelian symmetry,
it may also be electronically diagonalized by means of gronp theory. To achieve this we
make use of results from of a previous paper by one of us [11] in section 5. In section 6 we
elaborate somewhat on the physical background and possible practical applications. Finally,
results and perspectives are given in section 7.

In our presentation, the unitary transformation of an operator A and a wavefunction ¥
will respectively be depoted as

T:A=A=UtAU T:w=0=Uly 60

where U is a unitary operator, U! = U/~!, which will be written most often in the exponential
form U = exp S, where § is an anti-Hermitian operator, St = —§. 'We emphasize that all
operators are given as functions of the criginal basic dynamical variables of the coupled
system. Combined transformations Ti, : 7, : A are understood as

To:Ty: A= UUI AU, @)

2. The two-sites—two-spins—-one-particle model (221 model)

The 221 model is represented by the Hamiltonian
H=Hp+AQ) Y (el 020 + clye1) + BQ) D (chocar — el o)
o=t a=t,l

+C@ Y (e t+da)+D©@) Y (e —clew). @)
pFo=%1 pFO=T14
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We assume the Hamiltonian to be invariant against the symmetry operations E (unity
operator) and I (reflection operator in Cartesian space} of the reflection group {E, I} and
we introduce dynamical variables for the electronic and oscillatory subsystems respectively,
which may be characterized with respect to the symmetry operations. The electronic creation

and apnihilation operators {c},, c;o,i = 1,2; & =+, |} are assigned to the electronic base
vectors Jio) = c?o.lvac) and display the property
Ity = ol Ilo) =20},
i and correspondingly e 4)
I = C1od 120} = |1o) .

The vibrational coordinates Oy, , and P, , are chosen as ‘symmetry coordinates’, i.e. they
are related to a specific parity p (p = 1 for odd, p = 2 for even), such that

IQm,p = ("'l)pgm.pf (5)
where m = 1, ..., M, (M,: mutiplicity of representation [P}y, The phonon Hamiltonian
reads

th Z( m P -+ Q QL P Qm,p)- (6)

The quantities A(Q}, B(Q) C(Q) and D(Q) are assumed to depend on the oscillatory
coordinates {Q,, ,} only; a generalization to momentum coordinates is straightforward.
Ipvariancc of H with respect to {E, I'} requires

TA(Q) = A(D)] IB(Q) =—-B(Q)

ICEy=C(@M - I1D(Q)=-D(Q)L ™
The reflection operator I has the property ]

=1 ‘ (&)
and may be written as

I=ly-Ip ©

where Iy and Ip pertain to the electronic and vibrational subsystems, respectively. The
reflection operator Ig in {Q, Pl-space may be written in the form

Ig = exp [ —im > (P} Pupt+ 0L, 0mp - -é—)] (10)
m{p=1}

and has the property

IQf(Qm,p) = f((_l)p Qm.p)- . (11)
In addition we introduce the spin—flip operator I,

Ipcis = ciyls Llit)y=1i )

o T and correspondingly . ) (12)
Loy =ci s Ll =1i )1

and a ‘spin-flip parity’ p, = 1,2 for this operator, such that for a spm—panty-ordered
function we have

L, | WP)) = (—1)Pe |wiPe)y, (13}
The restriction to one particle leads to the particle conservation law

2
> (chen +cfen) = 1. (14)

i=l
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3. Background: Fulton-Gouterman transformation (FGT)

For reference and lucidity we briefly describe the original FG problem which is a spinless
model. It is represented by the Hamiltonian

H = Hy +a(Q)(cles + o) +8(Q)(cher — clen) (15)
where Hpy, is again of the form (6) and symmetry requires the relations
ICl =6‘21 I|1} =|2)IQ

and comrespondingly (16)
ICg=C‘[I I[l} =11)1Q

and for the Q-dependent functions a(Q), #(Q)

Ia(Q) = a(@)! Ib(Q) = —b(Q). (17
Particle conservation (for one particle) reads
2
Zcfci =1. {18)

i=1

Hamiltonian (15) can be diagonalized with respect to the electronic problem by a unitary
transformation, the so-called FGT (Tgg), which is characterized by the unitary operator

(1+1Ip) a—Ig)
22 242

We emphasize at this point that the form (19) displays the unitarity property only, if we
postulate a one-particle conservation Jaw. This necessitates that an application of Ugg in the
specific form (19) to non-particle-number-conserving operators like ¢, ete, is not permitted.
For further details we refer to the book by one of us [2]. This restriction is not needed if
we write Ugg in an exponential form, Urg = exp[Seg], §T = —§, where

Urg = (1+ cler — cles). (19)

(c;rcz + c;cl + cicz — c{c;) +

. T
Sro =iz (L + Io)(eles + cfeor + cler — cler — 1v2) + T — Ip)cfer —cfer). (20)

Under the one-particle provision this coincides with expression (19), but it may also
be used for particle numbers which do not equal one. For later applications (e.g. in
superconductivity) this will be a crucial point. The transformation of an operator A and of a
wavefunction ¥ is defined in equation (1). Using this relation the transformed fundamental
operators are found to be

141
TFGtC1=1(;:/§Q)(Cz c1)+(2f)ccl-cz)

TFG:(72=i(1;:/I§ )(CI-I-Cz)-i-( 25 )(6‘1-5-6‘2)

Teg : Omy = Qm.l(czcl +CICZ) ey
TeG : P = Pm.l(CZCl + CIC:)

TrG * @m2 = Qm2

TG : Pnz = Pu2
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and the basic constituents of the wavefunctions transform like

Irg 1 I (@) = %(IZ) — I[N F (D

L
V2

(22)
Trg : |2 (@) = —=(12) + Ig| 1)) F(Q)

where the ket-vectors [p) with p = 1,2 are given by [p) = cf;lvac) and f (@) is any phonon
function. 'The transformed Hamiltonian displays a diagonalized form in the electronic
subspace : ;

2 - -
Teg : H = Hro = ) il (Q)clep 23)
p=1
where
hE(0) = Hy + (~1)Iga(Q) + b(Q). 24)

Hence the new (transformed) eigenfunctions have the form
U = pro®(Q)  p=1,2 (25)

where the @5 satisfy Schrédinger-like eigenvalue equations which we have called the
FGE

RE(0)0P (0) = EP P (Q). (26)

‘We receive the eigenfunctions \Pf,é} of the original Hamiltonian (15) by transforming \‘I"j%)
back to the original picture

W = U B = L1y 4 (~1)?11) 1,109 () @
7
such that
e = (-1)re® (28)

with p = 1,2 denoting odd and even parity, respectively. We stress that the phonon
functions ®@(Q) attached to the even- and odd-parity total eigenfunctions %2 do not
themselves display the parity property in Q-space; this is only true for the full eigenfunctions
v

To avoid notational confusion it seems advisable at this stage to emphasize a basic
peculiarity in the practical formulation of unitary transformations. In the original picture,
the basic electronic operators of our system are related to some specific positions in Cartesian
space, e.g. the operator ¢; or the electronic orbit |1} pertains to a specific geometric ‘site
I’ such that by reflection we have Ie; = ol or I|1) = [2)1p (see (16)). As observed in
(21), the transformation Trg transmutes ¢; into a superposition of ¢; and ¢, From this we
recognize, therefore, that in the transformed picture the respective indices 1 and 2 no longer
pertain to well defined geometrical positions in the original Cartesian space. Rather, they
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now adopt the quality of symmetry properties, index 1 referring to an odd- and index 2
referring to an even-parity state (see (27)).

One of the principal virtues of the FGE is the topological display of the conflicting
tendencies inherent in most coupled electron—phonon systems. One of their terms, the
a((@) term, is connected with the reflection operator and tends to separate the vibrational
wavefunction into two parts in Q-space. This was first analysed numerically by Shore
and Sander [3]. More generally this influence can be described as a tendency to enlarge
the spatial extension of the vibrational wavefunction, which in recent times in the field of
superconductivity and quantum diffusion has been approximated by a ‘squeezed state’ in P-
space (i.e. an ‘anti-squeezed’ state in Q-space} {10]. But, as noted from the act of reflection,
it is rather a tendency towards spatial separation within the vibrational functions ®% than
a tendency towards broadening. The countereffect is represented by the 5(Q) terms and,
in the most simple case, is a ‘polaron’ effect, i.e. a tendency to reduce the mobility of the
electron, increasing its effective mass and dressing it with a phonon cloud.

In the afcrementioned book [2] a list of alternatives to the FGT is given. The simplest
one is discussed in [13]. It reads

1
Uneg = Etl + Ipteler — clead] = explSural (29)
Sup = & Io(cle; — ¢ 30
MFG = 77 glcyer — ¢qe2). (30)

Using equation (1) again we find the properties
1
Turg 1 €1 = E(Cl — Ipea)

1
Twpg : €2 == ﬁ(cz +Iger)

Tvrg : Gmi = Qm.l(c;rc‘z +C;€71)

TG © Prg = Pra(cles +clen) (1)

TvrG : O = Gm2

TG : Pry = Pnp

1
Twrg - |1} F(Q) = :7*5(11) + Ipl2D 7 ()

1
Tvrg : 12) F(Q) = 3(12) = |1 F(D).

The transformed form of Hamiltonian (15) is

2 a
Turc 1 H = Y hiio(Q@)clc; (32)

i=1

where

A (0) = Hy + (—1)Y [=Iga(Q) + b(Q)]. (33)
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In the following discussion we will rely fully on this modified form of the FGT (MFGT)
since the calculation proves much simpier than the one with the original form given by
expression (44). Since Tyrg: H is again diagonal with respect to the clectronic problem,
the new (transformed) eigenfunctions have a simple product form lIIMFG L/ @D(0),
=12

Again we obtain two Schrodinger-like eigenvalue equations for U (Q) which we call
the modified FG equations (MFGE)

B (2)3P(0) = EDdY(0) (34)
and the original eigenfunctions ll»‘éﬁ-G are given by
. o ] . Ca
v = U ¥fls = 5112 = 1 DIl Ue) $(0). (35)

Comparing these equations with (27) we note that j = 1 now pertains to even parity (p = 2)
and j == 2 to odd parity (p = 1).

4. Intuitive step-by-step construction

Our aim is to diagonalize the 221-Hamiltonian of section 2 with respect to the electronic
subsystem by means of a unitary transformation which preferably should be in the form
either of a single exponential or of a product of exponentials since then it is appropriate
for a multi-particle generalization. To achieve this we rely on a step-by-step procedure,
where the first two steps are straightforward extensions of the MFGT (31). We first choose
a transformation U, which would diagonalize Hamiltonian (3) if there were no Spln-—-ﬁlp
terms, i.e. we just supplement transformation (29}, (30) by spin indices

1
= [ VeUs = explSsl = —=[1 + Ip(chc1 — €}y e20)] (36)
a=t,i V2
8o = snlg(cl cio = ¢l ca). (37)

The basic transformation properties are again given by (31), if appropriate spin indication
is supplemented, and the transformed Hamiltonian (3) reads

Tt H = Hp+[~A(Q) Ig + B Y (chyc20 — €l c10)
a=t.{

+[-C(@) Ig+ D@1 Y. (e —clye10). (38)
pFo=tl

A second transformation I/, may be found if we take notice of the fact that the spin—flip-
operator I, introduced in section 2 plays a somewhat similar role to that of the reflection
operator Iy for the electronic orbitals. This suggests a kind of FGT for the spins

: 1
V=[]0  Ui=explsj]= A+ Io(cliesy — gl (39)
J=12

S; = dmlp(clicsy — o). (40)
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In passing, we note that this transformation would diagonalize a Hamiltonian which would
not involve orbital transfer terms 1 « 2, ie. if the A(Q)- and C({Q)-terms were absent
in (3). The basic transformation properties of (39), (40) are given in appendix B. If the
transformations T, and T}, are applied to Hamiltonian (3) in succession we find

Ty: Tt H = Hy — AQ)plehon +chyoay —clyeny — ¢y
+ B(Qglchycay — cfyeny — clyeny + el ey
+ C(Oehy o — ey ey — clyeny + ¢l yeny]
-+ D(Q)[C;TC;;_,L + C;,LCZT - L{Tcu - c’hcl?] (41)

and electronic diagonalization is not yet achieved.

Correspondingly to section 3 we note here that the ‘spin’ indices in the transformed
picture (after the application of T3, T, or T; to the electronic operators) are no longer related
to the spins themseives but to mixed spin states which can be attached to odd or even spin
parity (see equation (51)). For the ‘orbital’ indices in the transformed picture (7; or T;) the
remark made in section 3 directly applies again.

A final transformation T, which achieves this goal, is provided by

1+ Ip) & (1—Ip) &
Ue = exp[Se] = ( > 2 Y elven — CL,CN) + —TQ— Z(C}chl —clyeim) (42)
j=1

=

¥ 2 7 >
Se=ig(1+ IQ)[ > el —clen) = 1} + 2~ Ig) Y (ches = i) 3)
i=1

Jj=1
and yields the electronically diagonalized form

2 .
A=T.:Ty:T:H=T:H=Y 3 Qe cr (44)
j=11=t.}

where the total transformation operator reads U, = Uy Uple,

hjs(2) =Hyn — (1) A(Q)p — (-1 B(Q) — (1Y C(Q) I + (~1¥D(Q) (45)

and where, in the exponents, T = 1 is taken for T =1 and v = 2 for v =J. The transformed
eigenfunctions are thus of the form

VU = {71947 (0) (46)
where $Y™(Q) satisfies the FG-type equations
RUD (13U () = EVVRYD(Q). 4N

The basic properties of T; and of the total transformation T; are written in appendix B.
By means of the total transformation U, = U,UpU/; the eigenfunctions \Fﬁ% of the
original Hamiltonian H (see (3)) are found from expression (46) and may be written in the

form Wi = U, B2,

Wi = Uy LD ) — (=D g2 1+ (CIV 1L L) — oI 48YI()  48)
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where j =1,2; 7 = 1,2 and ®U?(Q) are the eigenfunctions of the MFGE (47).
For later reference we note the symmetry behaviour of this solution. Applying the
properties of the parity operators I and I, introduced in section 2 to expression (48) we get

Ijre = (DM LW = (DT “9)
from which we derive the parity correspondences

and for “spin parity’

72 p,. : (51)

5. Group-theoretical construction

In the preceding section we have found the electronic diagonalization by a sequence of
three unitary transformations which have been successively established by physical intuition.
There is also, however, a systematic way to construct such a type of unitary transformation.

In this section we present this approach. For this purpose we use the results of a
previous paper by one of us [11). There, a generalization of the FG approach is given
which exploits group-theoretical theorems [14-16] and allows for more general symmetries
of the Hamiltonian than a simple mirror symmetry. We consider a set of ¥ orthonormal
one-particle functions {|#}} which are distributed in space in such a manner that they can be
uniquely generated from one function within the set, say | N}, by the N symmetry operations
R, of a group G

|7} = R, |N) r=1,...,N Ry = E(unity element)
(rlrl)zsrr’ VI‘,J‘"=1,...,N (52)
Rl =R

These functions then establish the regular representation of the group. We require that this
group be Abelian

R R, = RR, 7V}",r’=1,...,N. (53)

Then there are precisely N irreducible representations I'®, v = 1,..., N, all of which are
one dimensional. We assume the Hamiltonian of the electron—phonon system is governed
by the group . Then the Hamiltonian of the vibrational subsystem can be written in the
form

Hop =1 (Pl Puy+92, 00, 0ny) ' 58
m,

where Q,, , are symmetry adapted coordinates pertaining to the irreducible representation
') and m = 1,...,M, is the multiplicity index within one irreducible coordinate
sequence. The interaction Hamiltonian W i§ written in the form

N
W= Ir){s|A.(Q) (5)

rs=1
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where the functions A, are chosen in such a manner that R, W = WR,. The structural
form of the eigenfunctions is then uniguely given by the Wigner formula

N
WO = N3 Y ORY(R INDRAQ)OV(Q). (56)

r=1
®W(Q) := normalized phonon function
R, := symmetry operation
R,(Q) := symmetry operation in Q-space.

Instead of making recourse to the group-theoretically correct structural form of the
eigenfunctions we can also apply a unitary transformation to the Hamiltonian H = Hyp+ W
of the form [11]

N N
Uss =N"Y23 "% %Ry |RA(Q)
r=1 y=1 .

N &7

N
Ulo = N2 33 xR )1 RIR).

r=1 y=1

If this transformation is applied to H the latter is diagonalized with respect to the electronic
subsystem

N
UlgHUs = Trg : H = y_ I¥)(y [h{a (P, Q) (58)
=1

where
N
h = [th + N xR U RIRIAIR] (Q)Rs(Q)]- (59)
rs=i

The remaining vibrational Schrodinger problem is thus governed by the generalized FGE

RN 2Y(Q) = ENo(Q) (60)
and the transformed eigenfunctions read
G0 = |y 0 (Q). (61)

Inverting the transformation, W% = Upg ¥}, we receive just the Wigner expression
(56), in which ®¥)(Q) is to be understood as a solution of (60).

We now apply the preceding formalism to our 221 model. We observe that the electronic
base in this model can indeed be considered as a regular representation of an Abelian group.
This becomes evident if we introduce the symmetry operations

Ry =I,1: combined inversion-spin—flip operator
Ry = I, : spin—fip operator

T (62)
Ry =1 : inversion operator

R4 = E : unity operator.
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By means of definition (52) we then have the elecironic base-vector set {|r}}

=111
12} =12 1)

63
13y =1{1 1) ©)
[4) =12 i)

The group, which is established by the operations (62), is isomorphic to the group Cay,
which is Abelian. Its four irreducible representations can be assigned to the orbital and spin
parities p(= 1, 2) and p, (= 1, 2} introduced in section 2

¥ = ppe = 11,12,21,22 _ (64)
and the characters are then given by

x(PPc)(E) =1
x(PPa)U) = (—1)?

(65)
xfppu)(fd) = (—1)#
X(W")(Iaf) =(— 1_)P+p¢_
Inserting these in expression (56) we get the unitary transformation operator
- 2 i
Ups =1 D (D7 Ip[1 4} + (=172 1) + (=1)?Igl1 |} + 12 L) {ppol (66)
MPa=l
and the transformed Hamiltonian (58) assumes the form
2 -
Tra: H= Y hE(Q)ppo)ppst (67)
P-Pu-=]
where
R (Q) = Hy + (1) A(Q)g + B(Q) + (D" C(Q)Ip + (-1 D(Q).  (68)
This leads to the FGE (see equation (60))
h%’uJ(Q)(p{ppc)(Q) = E{Pra) plore) (0 (69)

and if this vibrational eigenvalue problem has been solved the total eigenfunction is found
to be

Grirra) — Eppg)fp(wa)(g)_ {(70)

Inverting the transformation by means of the unitary operator (66), W) = Upg(pse),
we arrive at the originai eigenfunction

WP = JU=1PP L)L) + ()P 2 4) + (1Pl 1) + 12 DIy (71)
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which has the symmetry properties
w(PPo-) (- I)Plp(‘”“ I \P(P.Da) (- 1)}), W(pp“) (72)

The complete properties of the FGT are given by

2
Ulslio)jo|Uss = } Z —1)PHITtOO% pp g g, |

73)
DPsITEer s ip) o .

3
2 2
Usclppe)aaolUls =2 3 Y (-
i,j=1p,o=1

We stress again that i, j, 0, ¢ have the meaning of orbital and spin indices in the original
picture, while p, g, ps. g, indicate orbital and spin parities in the transformed picture.

6. Physical background

The 221 model should be considered as an archetype, just like its spinless analogue, which
may sometimes govern the dynamics of molecular vnits in magnetic systems, if spin-—flip
interactions are involved. But it should be noted that the relevance of unitary transformations
for prototype systems, even if they do not fully diagonalize the system, is of a broader scale
for two major reasons. On the one hand they can often can be performed up to a closed
form and on the other hand sometimes the dynamics of more complicated and physically
more realistic systems, possibly after some preceding manipulation, may be traced back to
the dynamics of one such prototype system.

Specifically, our 221 model is possibly of use in high-T, superconducters, where the
transfer dynamics of an electron (or hole) between an oxygen and its copper neighbours
may play a basic role in the ferromagnetic clustering process needed to establish metallic
behaviour. In this case, the transfer mechanism involves a spin—flip process. Ferromagnetic
clustering units of this type are presently considered, by many workers in the field, as the
initial step in a percolative process which, after reaching a doping threshold, eventually
allows for metallic behaviour in these cuprate materials although in the undoped form they
are anti-ferromagnetic and isolating. For details we refer to the proceedings of a recent
conference [17].

To show in a somewhat didactical manner how in the electron—phonon dynamics of
a Cu-O unit our 221 model may be exploited, we characterize this unit by an electronic
base of four states, |1}, |20}, i.e. a single orbital state with spins o =+, |. per each ionic
site, and by 2 single vibrational coordinate @ which describes the motion of the Cu—0 unit
against the surrounding. We introduce a fictitious formal inversion symmetry, such that
f|le) = 20}, IJio} = |i, —¢ )1, and I @ = — Q1. We note that these definitions do not
necessitate that the Hamiltonian itself has inversion symmetry. The most simple version of
the 221 model is then of the form

2
b= -12-(P2 + QZQZ) + E Z {e; + OfiQ)‘:;ro-Cio‘
i=1 o=t,4

+T Y (e}ycio + clpco0) + T 3 (Chpctmo +Clyer—0) (74)
ot a=t.J
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where spin—flip dynamics are only considered in combination with orbital transfer. o;Q
and ¢; are the static and dynamical energies pertaining to the copper and oxygen ions
respectively, while T and T, are the transfer constants with and without spin—flip. Both
transfer terms can be viewed as being due to orbital overlap but other causes are also
conceivable. If €1 # € and oy 3 —a then the application of the FGT or the MFGT will also
generate non-diagonal contributions in the transformed Hamiltonian, which then reads

) ,
T.:H= Z hﬂ%(Q)C}rsz + Hya (75)
Jit=l

where ﬁ%&(g) is a special realization of hgl%(g) (see equation (45)) and has the form

AUR(0) = L(P 20D+ L@ +e) ~ H=1) (e —a) O = (= 1) T Ip — (= 1)I** T, I,
(76)

H 4 pertains to the non-diagonal terms and is of the form

2
Hy =Y [L(e2 — e)lplel co + clcre) + o + ) QLo(~1)¥ (e} 02 — b)), (77)

=1

If & & & and @; ~ —ay, the contribution of the non-diagonal Hamiltonian to the
total energy eigenvalues vanishes (Hyy A~ 0). In this case, the non-diagonal parts of the
transformed Hamiltonian may be treated as a small perturbation.

Both the original FGT as well as those of the present investigations are one-electron
transformations and their utility is diminished if more than a single particle is involved.
Therefore a multi-particle generalization is desirable. Such a generalization, however, is not
easy to achieve if the one-particle transformation operator I/ is not given in an exponential
form, since then the unitarity condition poses problems. Yet, these do not occur if U is
written as I/ = exp[S], or as a product of exponentials, since then only anti-Hermiticity
of 8(= —5!) must be required, which in the multi-particle case is also easily warranted.
Looking back to the transformations of this study we note that the one found in section 4
is already in an exponential form

U, = eSefe® (78)

where the electronically bilinear operators 5. S, and S, may be directly understood in a
multi-particle sense as preserving their anti-Hermiticity, Since [, Sy] = O and [S3, 5.1 =0,
but [Sy, S.] # 0, we have two possibilities for writing U} in an exponential way

U, = efitheh or U, = eSeStse,

It should be noted, however, that the multi-particle application of this transformation is more
complicated than in the one-particie case, since the conservation law (14) can no longer be
used. We will discuss this further in a forthcoming paper.

Finally, it should be emphasized that the application of urnitary transformations does
not require the definition of a specific Hamiltonian since it refers to any dynamical variable
which is established as a functional of the basic variables of a given Hilbert space. The
latter may well be a subspace of the physically relevant total Hilbert space. Specifically,
the electronic base (two orbitals, two spins}, to which the transformations of this study are
referring to, may be subunits of a larger physical system.
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7. Results and conclusions

In this paper a spin—flip extension of the original two-site model of FG is considered. It
consists of two orbital states of the electronic subsystem and includes spin—fiip terms in
the Hamiltonian. We denote this model as the 221 model. The electronic subsystem is
coupled to a vibrational subsystem such that in Euclidean space the system is governed
by the inversion symmetry group. The total symmetry group of the system, however, also
includes spin—flip operations and is of dimension four; it is isomorphous to the group Ca.
Since this group is also Abelian, the generalization of the FG procedure can be employed.
This is presented in detail. On the other hand, we present a sequence of transformations
U, = U,U,U. which in their combination also diagonalize the electronic subsystem. U,
constitutes a modification of the FGT Ugpg. Its value lies in the fact that its factors U,
Us and U, disentangle the diagonalization procedure and allow for an additional physical
insight into the dynamics of the system.

Since the FG concept has proven useful for a large class of systems, where one particle (or
exciton) is coupled to a vibrational subsystem, it is highly desirable to find a generalization of
this concept for more than a single elementary particle or exciton. To achieve this, however,
it is necessary to find an appropriate exponential form for the multi-particle unitary operator.
Such a form, in general, is not provided by the group theoretical procedure presented in an
earlier paper [11]. Therefore one of our principal motivations for the present work was aimed
at finding such exponential form for an archetypical electron system which is important,
e.g. in the present discussion about high-T, superconductivity. This has been achieved in
this paper. In a forthcoming paper we will apply the established unitary transformation to
the maulti-particie sifuation. An additional motivation for doing this is related to one of the
most pronounced features of the FGT, which is the fact that it lays open the influence of the
electronic coupling on the vibrational subsystem in a very lucid way, such that the vibrational
parts of the total wavefunctions can be discussed easily. In particular the FGE are suggestive
for finding topological properties of the vibrational functions. This is of considerable
actuality, since recently effects relating to spatial alterations of the vibrational functions
(squeezing, anti-squeezing) have been discussed both in the field of superconductivity and
quantum diffusion. )

Finally, we return to the relation between the FGT and the LLPT in polaron theory. For
the latter we refer to the Pines article in the well known St Andrew’s Lectures [18]. As
mentioned in section 1, the FGT in translationally invariant systems may be viewed as a
kind of ‘discretized” LLPT. Since the LLPT in its original first quantized version is already
written in exponential form, its transcription to a second quantized version, which is easily
performed, already constitutes a legitimate multi-particle transformation.

For completeness we note that Lee ef af {19] have supplemented their ‘first’
transformation by a ‘second’ one of oscillatory displacement character. The multi-particle
transcription of this latter transformation does not pose difficulties and has been used by
Lemmens et gl [20] in the interacting polaron problem.

However, the full multi-particle application of the ‘first’ LLPT is rather complicated,
since the respective comunutator expansions, specifically that of the phonon coordinates and
momenta, involve electron—eleciron interaction terms. On the other hand, the possibility of
establishing an effective electronie correlation resulting from the original electron~phonon
interaction provides a fascinating contrast to the conventional effective correlation derived
from the famous Frohlich transformation which is used in the BCS theory.
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Appendix A. Search for the third transformation 7,

For our purpose we have to introduce a set of pseudo spin-operators including site numbers
i

1 1 1
Oix = 5("31*"” + el i) Oy = E(C;TCE¢ —clep) Oip = E(C!-TCET ~d},eu)

(80)
with commutation relations
[0k, O1y] = i81y0%; cyclic (81)
[0ix; Oix] =[Oy, Oky] = [0z, 01,1 = 0 Vi#k (82)
and
o+ ok =ofy+ oy = o+ o = @)

as particle conservation. Inserting (80) in the twice-transformed Hamiltonian (41) we obtain

Ty:T,: H = Hy — 4A(Q) g0, — o) + 2iB(Q)Ig(c2y — 01y) 7
+ C(Q)(o2; — 01) + 2D(2) (02 — 015). (84)

From the tables at the end of [2], we know the properties of the transformation

U =(1+Ig)e; +i(1 = Igjoy. (33)
For example

T:op=0l=1

T : Qum10; = —20m1190%0y = —10n 11 po; (36)

T : Opi10x = —20m107 = =4 Q1.
In (84) similar terms to those in (86) appear. Therefore, the extended form of (85)
Ue = (1 + Ig){(o1; + 02:) + (1 — Ig){o1y + 02y} @87

should be able to diagonalize Ty, : T, : H with respect to the electron problem.
Rewritten in creation and annihilation operators we obtain

L+ 1) & l-Ig)y
Uy = ( 2 2 Y (elheit —CJ;CN,)"‘( 2 2 2 (Chey—can  @9)
i=1

i=1

and its exponential form U, = exp[S,] with

2 2
T g
S =i (1+ IQ)[ > (o —cfjap) — 1] +2U-1g) > (cheiy — cfy ). (89)
i=1 =1 .
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Appendix B. List of transformations

The basic properties of T, are

1
il = E(Clo’ ~ Ipcas)

I
To: o = ﬁ@k + Igcis)
Ta: Qmi = Omilg Z (c}zc10 ~ clyc20)
o=t}

To: Puy = Paalg Z (CLCIG —cle)
s=t.}

T Oma= On2
T, Pm.z = Pm,?.

T, : |16) F(Q) = ——mo + Ipl20)1£(Q)

Q‘

Ta: 126) F(Q) = ——[i2cr) = Ig|la}) F(Q).

7

8

The basic properties of T;, are
Ty o = —lw(c- + Igcey)
b« Lt '\/-2- £t el
1
Tpicy = :/-—i(cu, —Igcip)
z i
Ty : Om1 = @milg Z<CITC"J« —cﬁciﬂ

Ty : Py = Pmalp Z(ctfc,l el

i==1

Tyt OQn2=Cn2

Tb : Pm,2= Pm.Z

T li 1) F(Q) = %nf 1)~ Igli WIF(Q)
T, i 1)F(Q) = %ni )+ Ipli HIFQ).

The basic properties of 7, are
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i 1
Teion = 5(1 +1g)eir + 5 (1 — Iy

i 1
T.: Cil = —5(1 -+ IQ)C“‘ - 5(1 - IQ)C;T

2
Te: Qi = Om1 3 (chhery +clyeis)

i=1

Ty : Puy = P ZZI:(CETTQ“L + e ©)
I Q2= Qn2
I Pha= Py
T:li NFQ) = [1 224 ) - “TI%' ¢>] £@)
141,

Te:li ¢}f(Q)=[ i )+ IQI T}f(Q)

The basic properties éf Ti are

T ep = HI(1 ~ Ip) +i(1 + Ip)erp + ) + [(1 — Tp) —i(1 4+ Ip)](ery + €20)}
Tt eyy = {1 = Ig) +i(l + Ig)l(eay — e1q) + [(1 — Ig) —i(1 + Ig)l(ery — €24)}
Ti : eap = I = Ig) +i(1 + Ig))(eay — e1y) + [(1 — Ig) — i1 + Ig)(eay — €14)}
T ooy = H{[(1 = Ig) +i(l + Ig)I(—cap — c1y) + [(A — Ig) — i(1 + Ig)l(ers + ey )}
T: Q1= Qm.IIQ[C;TCIT - Ciu?u = cJ{TCzT + chcu]

T : Pm|1 = Pm.IIQ [CTZTC]T - C;.¢C]¢ - CITCZT + CI.I.CQL] (93)
T Qm.2 = Qm,2

L. Pua= Pn2

To: L@ = 301 D) — 12D g — 11 g+ 12 VIFWQ)

To: 1202 = 3[11 g+ 121) =11 4) — 124l f (@)

TN PF@) =4[-11 1) +12 D p — 11 M +12 DIAD)

T 200 F(Q) = 3[-11 P p — 2 1) =1 L} = 12 L} gl F(Q).
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